Kate Follette, Amherst College

Of the thousands of known extrasolar planets, why are the dozen or so directly imaged exoplanets among the most important despite their apparently anomalous properties within the general exoplanet population (>10 astronomical units, >2x the mass of Jupiter)? What are the prospects for (and recent successes in) detecting younger, lower-mass and/or closer-in planets via direct imaging? I will discuss the current state of the art in the field of high-contrast imaging of extrasolar planets and the disks of gas and dust from which planets form (“circumstellar disks”). I will place particular emphasis on a subset of objects that host both disks and (likely) planets – the so-called “transitional disks”. These young circumstellar disks are almost certainly actively undergoing planet formation, and yet the presence of disk material complicates our ability to isolate light from planets and/or protoplanets embedded within them. I will end by discussing recent results from my Giant Accreting Protoplanet Survey (GAPplanetS) of 15 southern-hemisphere transition disks. The GAPlanetS survey aims to find protoplanets embedded in transitional disks through a distinctive signature at hydrogen wavelengths, and has so far discovered: 2-3 planets, 1 accreting M-dwarf stellar companion, and 1 disk feature masquerading as a planet.