Of the thousands of known extrasolar planets, why are the dozen or so directly imaged exoplanets among the most important despite their apparently anomalous properties within the general exoplanet population (>10 astronomical units, >2x the mass of Jupiter)? What are the prospects for (and recent successes in) detecting younger, lower-mass and/or closer-in planets via direct imaging? I will discuss the current state of the art in the field of high-contrast imaging of extrasolar planets and the disks of gas and dust from which planets form (“circumstellar disks”). I will place particular emphasis on a subset of objects that host both disks and (likely) planets – the so-called “transitional disks”. These young circumstellar disks are almost certainly actively undergoing planet formation, and yet the presence of disk material complicates our ability to isolate light from planets and/or protoplanets embedded within them. I will end by discussing recent results from my Giant Accreting Protoplanet Survey (GAPplanetS) of 15 southern-hemisphere transition disks. The GAPlanetS survey aims to find protoplanets embedded in transitional disks through a distinctive signature at hydrogen wavelengths, and has so far discovered: 2-3 planets, 1 accreting M-dwarf stellar companion, and 1 disk feature masquerading as a planet.