Swati Singh

At Williams since 2016

Scholarship/Creative Work

Research Interests

I use theoretical techniques from quantum optics, AMO, and condensed matter to understand and exploit quantum effects in macroscopic systems. I am particularly interested in identifying emerging quantum platforms as precise detectors of various physical phenomena, quantifying the effects of decoherence, and developing quantum simulators for many-body effects. I use both analytical and computational methods and work in close collaboration with experimentalists in atomic, optomechanical and solid-state qubit systems. 


  • Q. Song, S. Singh, K. Zhang, W. Zhang, and P. Meystre, One qubit and one photon: The simplest polaritonic heat engine, Phys. Rev. A 94, 063852 (2016).
  • S. Singh, L.A. DeLorenzo, I. Pikovski, and K.C. Schwab, Detecting continuous gravitational waves with superfluid 4He, arXiv:1606.04980 [gr-qc] (2016).
  • F. Bariani, H Seok, S. Singh, M Vengalattore, P Meystre, Atom-based coherent quantum-noise cancellation in optomechanics, Phys. Rev. A 92, 043817 (2015). (Editors’ Suggestion)
  • S. Singh, Y. Chu, M. Lukin, and S. F. Yelin, Coherent Population Trapping, Nuclear Spin Cooling, and L ́evy Flights in Solid-State Atom-Like Systems, Adv. Atom. Mol. Opt. Phys. 64, 273 (2015).
  • F. Bariani, S. Singh, L.F. Buchmann, M. Vengalattore, P. Meystre, Hybrid optomechanical cooling by atomic Λ systems, Phys. Rev. A 90, 033838 (2014). 
  • S. K. Steinke, S. Singh, P. Meystre, K. C. Schwab, and M. Vengalattore. Quantum back-action in spinor condensate magnetometry, Phys. Rev. A 88, 063809 (2013).
  • H. Seok, L. F. Buchmann, S. Singh, and P. Meystre. Optically mediated nonlinear quantum optomechanics, Phys. Rev. A 86, 063829 (2012).
  • E. M. Wright, M. Mazilu, S. Singh, K. Dholakia, and P. Meystre. Theory and simulation of an Optical Spring Mirror, Proc. SPIE 8458, “Optical Trapping and Optical Micromanipulation IX”, 84580A-1, doi 10.1117/12.929281 (2012).
  • S. Singh, H. Jing, E. M. Wright, and P. Meystre. Quantum state transfer between a Bose- Einstein condensate and an optomechanical mirror, Phys. Rev. A 86, 021801(R) (2012).
  • H. Seok, L. F. Buchmann, S. Singh, S. K. Steinke, and P. Meystre. Generation of mechanical squeezing via magnetic dipoles on cantilevers, Phys. Rev. A 85, 033822 (2012).
  • S. K. Steinke, S. Singh, M. E. Tasgin, P. Meystre, K. C. Schwab, and M. Vengalattore. Quantum-measurement backaction from a Bose-Einstein condensate coupled to a mechanical oscillator, Phys. Rev. A 84, 023841 (2011).
  • S. Singh, G. A. Phelps, D. S. Goldbaum, E. M. Wright, and P. Meystre. All-Optical Optome- chanics: An Optical Spring Mirror, Phys. Rev. Lett. 105, 213602 (2010).
  • M. Bhattacharya, S. Singh, P. L. Giscard, and P. Meystre. Optomechanical control of atoms and molecules, Laser Physics 20, 57 (2010).
  • S. Singh, and P. Meystre. Atomic probe Wigner tomography of a nanomechanical system, Phys. Rev. A 81, 041804(R) (2010).
  • S. Singh, M. Bhattacharya, O. Dutta, and P. Meystre. Coupling Nanomechanical Cantilevers to Dipolar Molecules, Phys. Rev. Lett. 101, 263603 (2008).

  • Z. Li, S. Singh, T. V. Tscherbul, and K. W. Madison. Feshbach resonances in ultracold 85Rb- 87Rb and 6Li-87Rb mixtures, Phys. Rev. A 78, 022710 (2008).
  • S. Aubin, M. Extavour, S. Myrskog, L. LeBlanc, J. Esteve, S. Singh, P. Scrutton, D. McKay, R. McKenzie, I. Leroux, A. Stummer, and J. H. Thywissen. Trapping Fermionic 40K and Bosonic 87Rb on a Chip, J. Low Temp. Phys. 140, 377 (2005).